Abstract
Cotton leafroll dwarf virus (CLRDV, genus Polerovirus, family Solemoviridae) has been reported to infect cotton in Brazil, Argentina, India, Thailand and Timor-Leste (Agrofoglio YC et al. 2017; Corrêa RL et al. 2005; Mukherjee et al. 2012; Ray et al. 2016; Sharman et al. 2015), and in the United States (Ali and Mokhtari et al. 2020; Avelar et al. 2019). It has also been recently reported to infect Cicer arietinum (chickpea) in Uzbekistan and Hibiscus syriacus in Korea (Igori et al. 2022; Kumari et al. 2020). In China, the natural infection of plants by CLRDV has not been reported previously. In August 2017, leaf samples were collected from a wild plant of Malvaviscus arboreus (Malvaceae) exhibiting symptoms including leaf yellowing and distorting in Tengchong County of Yunnan Province. Leaves were used for total RNA extraction using TRIzol Reagent (Invitrogen, USA). Small RNA library construction and deep sequencing was performed on illumina HiSeqTM 2000 platform by Novogene Bioinformatic Technology Co., Ltd (Beijing, China). A total of 11, 525, 708 raw reads were obtained and further computationally analyzed by Perl scripts. The adaptors were removed and the obtained 7, 520, 902 clean reads with size of 18- to 26-nucleotide (nt) were aligned with the GenBank virus RefSeq database using Bowtie software. These reads were mainly mapped to the genomes of hibiscus bacilliform virus (genusBadnavirus,familyCaulimoviridae), hibiscus chlorotic ringspot virus (genus Betacarmovirus, family Procedovirinae), hibiscus latent Singapore virus (genus Tobamovirus, family Virgaviridae) and CLRDV isolate ARG (accession no. GU167940). The average coverage depth of clean reads mapped to CLRDV genome was 97.76%. Contigs greater than 50 nt were used to search for similar sequences by BLASTx, and 107 contigs were annotated as homologous to CLRDV isolates. To confirm CLRDV infection, reverse transcription polymerase chain reaction (RT-PCR) was performed using the specific primer pair CLRDV-F (5'-TCCACAGGAAGTATCACGTTCG-3') and CLRDV-R (5'-CCTTGTGTGGTTTGATTCGTGA-3') designed based on two of these contigs well-aligned to the genome of CLRDV isolate ARG. An amplicon of 1095-bp size was amplified, and was sequenced by Sanger sequencing (TsingKe Biological Technology, Chengdu, China), and BLASTn search results showed a maximum nucleotide identity of 95.45% with CLRDV isolate CN-S5, an isolate obtained from soybean aphid host in China (accession no. KX588248). To obtain more information on this CLRDV isolate, four primer pairs were designed and used for RT-PCR amplification (TableS1). The amplicons with size of about 860-, 1400-, 3200- and 1100-bp, were obtained separately and assembled into a complete genome sequence up to 5, 865-nt in length (isolate YN, deposited under GenBank accession no. MN057665). BLASTn showed the highest nucleotide similarity of 94.61% with CLRDV isolate CN-S5. From 2018 to 2022, additional M. arboreus samples with leaf yellowing or curling symptoms (9 from Shapingba District in Chongqing City, 5 from Nanchong City in Sichuan Province, 9 from Kunming City and 12 from Tengchong County in Yunnan Province) were collected and tested for CLRDV by RT-PCR using primer pairs CLRDV-F/CLRDV-R. The nucleotide sequences of the CLRDV P0 gene in two samples from Tengchong County were obtained by Sanger sequencing and deposited under GenBank (CLRDV isolate TCSL1 P0 gene, accession no. OQ749809; CLRDV isolate TCSW2 P0 gene, accession no. OQ749809). To our knowledge, this is the first report of CLRDV naturally infecting Malvaviscus arboreus in China, thus extending the information on its geographical distribution and host range. Malvaviscus arboreus is a widely cultivated ornamental plant in Yunnan Province, China. The natural occurrence of CLRDV not only affects the ornamental value of Malvaviscus arboreus, but also poses a potential threat to cotton production in China. This study will assist further surveillance of CLRDV infection and future development of effective protection strategies against CLRDV in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.