Abstract

Clematis patens (Ranunculaceae), often called big-flower clematis, is a perennial plant native to Northeast Asia, including China, Japan, and Korea. This plant is one of the popular ornamental plants because of its large and colorful flower. In Korea, it is widely cultivated for public and private gardening and medicinal purposes. In September of 2021, symptoms of rust disease were found on C. patens at a public park (ca. 30 ha) in Jeonju (35°52'16"N, 127°03'16"E), Korea, where the disease occurred on 80% of C. patens plants (n = 50) surveyed, and disease severity in each affected plant ranged 60 to 90%. Symptoms appeared as light green, vein-limited chlorotic spots on the upper surface of infected leaves, and yellow or orange rust pustules were formed on the corresponding lower surface of leaves. A representative sample was deposited in the Kunsan National University Herbarium (KSNUH1522). Uredinia were yellow or orange, round to ellipsoidal, mostly scattered, and 0.5-1 mm in diameter. Urediniospores were pale yellow, ellipsoid or ovoid, 23.1 to 34.8 × 14.9 to 24.7 (average 29.3 ± 2.7 × 18.8 ± 2.2 μm [mean ± SD], n = 50) μm with a verrucose and hyaline wall of 1.0-2.0 μm thick. The morphological characteristics were similar to those reported for Coleosporium clematidis (Barclay 1889, Hiratsuka et al. 1992). To confirm morphological identification, genomic DNA was extracted from a representative specimen (KSNUH1522). The internal transcribed spacer (ITS) rDNA with primers ITS5-u and ITS4rust (Pfunder and Schürch 2001) and large subunit (LSU) rDNA with primers LRust1R and LRust3 (Beenken et al. 2012) were amplified for sequencing. Two resulting sequences (Acc. Nos. OM200310 for ITS, OM184262 for LSU) were blasted in GenBank. The ITS sequence of the Korean sample differs at a nucleotide with a sequence of C. clematidis from Clematis sp. (KX386005) but at eight nucleotides with other three sequences of C. clematidis (KX386007, KX386008 and KX386010). The LSU sequence differs at a nucleotide from the sequences of C. clematidis from Clematis sp. (KX386039, KX386040, KX386042). In phylogenetic trees of the ITS and LSU sequences, the Korean isolate formed a well-supported clade with the reference sequences of C. clematidis. For a pathogenicity test, urediniospores (1.25 ×106/ml) were harvested from the infected leaves and inoculated onto three healthy C. patens. Three non-inoculated plants served as controls. Inoculated and non-inoculated plants were kept in a plant growth chamber at 22°C, a 16/8 h of light cycle, 80% humidity. After three weeks, all inoculated plants formed yellow rust pustules on the lower surface of leaves, identical to what was previously observed in the field, whereas the control plants remained symptomless. The same pathogen was confirmed from the symptomatic plants, fulfilling Koch's postulates. Based on morphological characteristics, sequence data and pathogenicity test, the causal agent of rust on Clematis patens was identified as C. clematidis. To our knowledge, this is the first report of rust disease caused by C. clematidis on C. patens in Korea and previously recorded only in Japan (Hiratsuka et al. 1992). Coleosporium clematidis has been reported on about 60 species of Clematis in Asia and Africa but has not been reported in Europe and North America (Farr and Rossman 2022). In Korea, Clematis fusca var. violacea was previously reported as a host plant for the causal pathogen (Cho and Shin 2004). Given the high occurrence and severe damage, this disease could be a potential threat to the cultivation of C. patens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call