Abstract

Citrus is one of the most popular fruit crops in the world. Citrus virus A (CiVA, species Coguvirus eburi, genus Coguvirus) is a newly identified virus (Navarro et al. 2018) with two negative-sense single-stranded RNAs (RNA1 and RNA2). To date, CiVA has been detected on different citrus species in South Africa, U.S.A. and Greece (Bester et al. 2021; Park et al. 2021; Beris et al. 2021). CiVA has not been reported in China. In Sept. 2018, virus-like symptoms of leaf mottling, leaf flecking, and oak leaf patterns were observed on 'Orah' mandarin (Or) and 'Harumi' tangor (Ht) trees grown in Neijiang (NJ, Sichuan Province) and on Citrus reticulata cv.'Jinqiushatangju' (Jq) trees in Guizhou Province (GZ). Two mixed leaf samples (HY-NJ: 1 Or and 1 Ht and GZ-1: 2 Jq) were collected from symptomatic trees and then subjected to high-throughput sequencing (HTS). Total RNA was extracted by TRIzol. The cDNA library was constructed after depleting ribosomal RNA using a TruSeq RNA Sample Prep Kit and sequenced by Illumina HiSeq X-ten platform with paired-end reads length of 150 bp. After removing adaptors, low-quality reads, and reads homologous to citrus hosts by CLC Genomics Workbench 11 (Qiagen, U.S.A.), 917,547 and 1,508,134 clean reads were obtained from 56,239,772 and 81,535,900 total reads for HY-NJ and GZ-1, respectively. De novo assembly of the clean reads by CLC Genomics Workbench 11 resulted in 2,181 contigs for HY-NJ and 3,718 contigs for GZ-1. BLASTX searches of the contigs against local virus (taxid:10239) and viroid datasets (taxid:2559587) downloaded from NCBI allowed identification of several viruses and viroids. CiVA, citrus leaf blotch virus, citrus yellow vein clearing virus (CYVCV), and citrus psorosis virus (CPsV) were detected in HY-NJ. CiVA, hop stunt viroid, citrus viroid VI, citrus viroid V, citrus exocortis viroid, citrus dwarfing viroid, citrus bent leaf viroid, citrus bark cracking viroid, CYVCV, citrus tristeza virus, apple stem grooving virus, and CPsV were also detected in GZ-1. The lengths of the CiVA contigs were 6,682-nt and 6,670-nt matching RNA1 and 2,728-nt and 2,715-nt matching RNA2, respectively. The average coverage depth of clean reads mapped to CiVA-related contigs in HY-NJ was 64.90 and 156.54 for RNA1 and RNA2, respectively, and 26.50 and 558.08 in GZ-1. The full-length genomes of CiVA in HY-NJ and GZ-1 were determined by Sanger sequencing of six overlapping cDNA fragments obtained by RT-PCR and 5' and 3' RACE. At least 5 molecular clones were randomly selected for each fragment. The NJ isolate had a 6,690 nt RNA1 (GenBank accession no. MZ436805) and a 2,740 nt RNA2 (MZ436807). The GZ isolate had a 6,688 nt RNA1 (MZ436804) and a 2,734 nt RNA2 (MZ436806). BLASTN showed that the NJ and GZ isolates have 99.31 to 99.60% sequence identity to the isolate CG301 (MT922052; MT9220523). A phylogenetic tree constructed from nucleotide sequences indicated that the NJ and GZ isolates are closely related to the CG301 isolate. Among 105 citrus samples (35 Or and 30 Ht from NJ and 50 Jq from GZ) randomly collected, 11 samples (4 Or, 2 Ht and 5 Jq) with similar symptoms tested positive by RT-PCR using generic primers designed from conservative regions of RNA2 (F: TTGCAGTAGTGAGAAGGGAGT; R: TCAAAAGAGGCAGTGGTAGGA). To our knowledge, this is the first report of CiVA infecting citrus trees in China. The results will help facilitate further research to assess the threat of CiVA to citrus growing areas in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call