Abstract

In July 2020, pear trees (Pyrus pyrifolia cv. Niitaka) with cankers displaying dark-red bacterial ooze on the trunk and branches were found in two pear orchards located in Naju, Jeollanam-do, South Korea (34°57'50″ N, 126°43'52″ E and 34°56'14″ N, 126°33'42″ E). The incidence was 1.5% (3 out of 200 trees) and 0.83% (1 out of 120 trees), respectively. The symptoms were similar to those of the bleeding canker caused by Dickeya fangzhongdai (Choi et al. 2021), which is typically observed in October. The bacterial ooze was suspended in sterile water and streaked in Luria-Bertani (LB) medium to isolate single bacterial colonies. Two isolates (PRI-B16 and PRI-B17) from representative diseased trees were selected for investigation. Physiological and biochemical characteristics of the isolates analyzed using the BIOLOG GEN III MicroPlate™ system (Biolog, Hayward, CA, USA) were similar to the characteristics of Pectobacterium actinidiae (Portier et al. 2019). These isolates were positively utilized stachyose, L-galactonic acid-g-lactone, guanidine hydrochloride and weakly utilized (-)-D-arabitol (Portier et al. 2019). Bacterial genomic DNA was extracted from cell cultured in 5 ml LB at 28C for 2 days using G-spin DNA extraction kit (iNtRON Biotechnology, Korea) according to the manufacturer's protocol. PCR amplification was amplified as Portier et al. (2019). The generated their sequences of the small subunit ribosomal RNA (16S rRNA) using primers 27f and 1492r (Heuer et al. 1997) (Genebank accession numbers: ON951863 and ON951864) were 99.86% and 99.76% identical, respectively, to that of P. actinidiae isolate SCPJ-1 (KY307837.1) by a BLAST search against gene bank databases. The dnaX (Genebank accession nos: ON960281 and ON960282), leuS (Genebank accession nos: ON960283 and ON960284), and recA (Genebank accession nos: ON960285 and ON960286) genes of these isolates were also amplified and sequenced by previously described Stawiak et al. (2009) for dnaX and leuS, and Waleron et al. (2002) for recA. A neighbor-joining phylogenetic analysis based on the concatenated dnaX, leuS, and recA sequences placed the two isolates in a clade containing previously identified P. actinidiae isolates. A pathogenicity test was conducted using two-year-old pear (P. pyrifolia cv. Nittaka) trees grown in a greenhouse. Wounded and unwounded pear tree branches were inoculated with 10 µL of the bacterial suspension (108 CFU/ml) or sterile water as a control. The inoculated plants were maintained at 30°C without light for 2 days under 85-90% humidity. At 7 days post-inoculation, bacterial ooze was observed on the branches inoculated with a bacterial suspension, whereas branches subjected to unwounded inoculation and water inoculation exhibited no symptoms. This assay was performed three times. We reisolated two colonies from each sample showing typical bleeding symptoms and confirmed their identity by sequencing the dnaX locus. Pectobacterium actinidiae has been reported to cause canker in pear trees in Brazil (Araujo et al. 2021) as well as kiwifruit in South Korea (Koh et al. 2012). This is the first report of P. actinidiae causing canker on pear trees in South Korea and is, therefore, pathologically significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call