Abstract
Pinellia ternata (Thumb.) has been used for over 1000 years as a traditional Chinese herbal medicine (Ying et al. 2007) and is widely cultivated in Guizhou Province, China. It is cultivated over an area of 2000 hectares, and is of great value to underdeveloped regions. In April 2020, blight was observed in a field of P. ternatain Bijie County, Guizhou Province, China (27°30'N, 105°28'E). Around 20 hectares of P. ternata were surveyed and the disease incidence ranged from 10 to 12%. The disease symptoms included light brown lesions formed on the stems near the soil line. The color of the lesions became darker, and the stems became constricted around the lesions and broke, associated with the leaf blight. To identify the causal agent of this blight, 22 diseased plants (about 30 d-old) were collected, the margins of the infected parts were cut into small pieces (5 mm) and surface disinfested with 1% NaOCl for 10 min, 75% ethanol for 30 s, and rinsed three times in sterile distilled water. The pieces were blotted dry with sterile filter paper and placed on potato dextrose agar (PDA, Hopebio, China), incubated at 28℃ in darkness until fungal hyphae growth was visible. Sixteen cultures with different morphologies were recovered from the samples. When representative isolates of each culture type were inoculated onto plants, one produced similar blight symptoms. The representative isolate was called CD-1. The colony color was first white but turned light brown after grown on PDA for 6-7 d, and produced dark brown sclerotia. The hyphae were branched at right angles, with a slight constriction at the base of the branches and a septum near the junction where the branch separates from the main hyphae. Hyphal cells were stained with 0.5% Safranin O and 3% KOH and were observed to be multinucleate. These morphological features indicated that CD-1 likely is R. solani (Sneh et al. 1991). When paired with tester strains AG1 and AG4(provided by Dr. Genhua Yang, Yunnan Agricultural University). CD-1 showed anastomosis with isolate of AG4 (Fenille et al. 2002). Genomic DNA was extracted from the isolate (Thangaraj et al. 2018) using a fungal genomic DNA extraction kit (Tiangen, China). The internal transcribed spacer (ITS) regions were amplified using the primers ITS1/ITS4 (White et al. 1990). A 535 bp fragment was amplified that showed 99% coverage and 99.4% identity with an isolate of R. solani AG4-HGI (GenBank: HG934417). The gene sequence was deposited in GenBank as accession #OL518945. Pathogenicity tests were performed using 30 d-old plants planted in sterilized soil in pots. Cut mycelial discs (diameter 6 mm) from 3-day-old PDA cultures and placed beside stems of 21 healthy plants. Nine plants treated with agar plugs were control samples. Inoculated plants were maintained at 24 ± 5℃ in a green house and watered every two days with sterilized water. Typical blight symptoms developed on the inoculated plants at d 3-5 post inoculation, whereas the control plants remained healthy. The experiments were repeated three times, and the isolates was re-isolated from the inoculated plants and identified as R. solaniAG4 by morphological features and molecular method. R. solani has been reported to cause blight of many plants such as coffee (Ren et al. 2018) and sesame (Cochran et al. 2018). To the best of our knowledge, this is the first report of R. solani AG4-HGI causing disease on P. ternate, both in China and worldwide. This finding suggests that this pathogen may cause a threat to cultivation and production of P. terenata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.