Abstract
Spider lily (Hymenocallis littoralis (Jacq.) Salisb.) is a widely cultivated horticultural plant worldwide and has ornamental and medicinal value. Spider lily plants were seriously affected by a leaf spot disease in the campus of Guangdong Ocean University and gardens in Zhanjiang city in February 2018 with an incidence of 30 to 100%. Affected leaves usually developed small circular purple spots, which enlarged to oval spots and large irregular spots. The spots were brown at the center, deep purple at the border and surrounded by a yellow halo. Diseased cultivars were collected in Zhanjiang city, Gangzhou city in Guangdong province and and Zhangping city in Fujian province. Symptomatic leaf samples were disinfested with 1% NaOCl, and cultured on sucrose agar (PSA) at 28 °C for one week. Ten single-spore isolates were recovered from PSA medium. Colonies developing on PSA were grayish white with a regular border. Conidia were straight, hyaline with rounded ends, 4.3 to 6.1×12.8 to 32.1μm (n = 50 conidia of each isolate). Fungal mycelia were hyaline, septate, and branched. Conidia were born on a long conidiogenous cell, appressoria were oval, 6.7 to 10.7 × 5.2 to 6.2 μm (n=50). The isolates were morphologically identified as Colletotrichum sp. (Weir et al. 2012). Tests of pathogenicity were performed according to Koch's postulates using three isolates. Fresh wounds were made with a sterile needle on the healthy surface of leaves of H. littoralis at the 4- to 6-leaf stage and each leaf was covered with a piece of cotton drenched with 200 μL of conidial suspension (106 conidia/ml) from each isolate. Control seedlings were inoculated identically except sterile water was used to drench the cotton. Inoculated plants were placed in a moisturizing light incubator at 25℃ and 80% humidity under a 12-h light/dark cycle for 20 days and examined daily to monitor disease symptom development. Small round brown spots were observed at the inoculation sites 3 days after the inoculation. The brown spots developed into large brown lesions 5 days after inoculation. There were no symptoms observed in the water-inoculated plants. A Colletotrichum spp. strain based on morphology was consistently reisolated from leaves lesions fulfilling Koch's postulates. For molecular identification, the internal transcribed spacer (ITS) region of ribosomal DNA, calmodulin (CAL), Tublin (Tub) and Apmat loci of three isolates were amplified using primer pairs of ITS4/ITS5, CL1C/CL2C, T1/T2 and AM-F/AM-R (Sharma et al. 2015). A phylogenetic tree derived from a neighbor-joining analysis of a concatenated alignment of ITS, CAL, Tub and ApMAT sequences was created. The accession numbers of three isolates GZHLCG, ZJHLCG and FJHLCG used in this study were MW553083, MN540457, MN540458 for ITS, MW553087- MW553089 for CL, MW553090-MW553092 for Tub and MW553084-MW553086 for ApMAT. The sequences of the three isolates were aligned with related species of Colletotrichum (Sharma et al. 2015). Analyses based on concatenated data sets of four genes showed that the sequences had high levels of identity to those of the C. siamense strains. According to both morphological and sequence analyses, the H. littoralis pathogen was identified as C. siamense. There is a report of foliar diseases on H. littoralis caused by Colletotrichum sp. (Tan et al., 2009). To our knowledge, this is the first report of anthracnose on H. littoralis caused by C. siamense in China. Identification of the pathogen provide valuable information for diagnosis and controlling this disease in H. littoralis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.