Abstract

Tea [Camellia sinensis (L.) Kuntze)] have been widely planted in Guizhou Province in recent years, and the cultivation area in the region ranks first among all the provinces or cities in China. Leaf spot disease was an important disease of tea in Kaiyang county, Guizhou Province, which mainly damaged young leaves and shoot of tea and led to a huge loss of the production of tea. The spots initially represented brown and round, and then the diameter of the spot was 4-6 mm during later period, with the color of the center in the spot changing white. Tea leaf spot disease always occurs in early spring and the region with 1300 m altitude. From 2016 to 2019, disease incidence of leaves was estimated at 84% to 92%, and the disease severity on a plant basis was determined to be 64% to 76%, depending on the field. To identify the causal agent of the foliar disease, pieces of the lesion margins were surface sterilized with 75% ethanol for 30 s, followed by 0.5% sodium hypochlorite for 5 min, rinsed with sterile water three times, plated on potato dextrose agar (PDA) and incubated in the dark at 25C for 3 to 5 d. The hyphal tips from the margins of the growing colonies were successively picked and transferred to fresh PDA plates to purify the isolates. The result indicated that the isolates on PDA represented initially round form, and white mycelium. The reverse sides of the isolates firstly displayed light yellow on PDA. Conidiophores represent dark brown, geniculate. Brown conidia, narrow ovoid, length: 22.9 ± 4.5 μm, width: 11.1 ± 1.7 μm, with 4 to 8 transverse septa and with conspicuously ornamented walls. The gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Berbee et al. 1999) and the Alternaria allergen 1 (Alt a1) (Hong et al. 2005) of three strains were amplified, sequenced and deposited in Genbank. Maximum parsimony phylogenetic analysis based on concatenated sequences of combined GAPDH (1-583) and Alt a 1 (588-1065) indicated that the strain AXLKY_2019_010 was identical to reference strain Alternaria longipes strain EGS 30-033, and the clade was supported by 96% bootstrap values. According to the Koch's postulate, the tea leaves were inoculated with PDA plugs with actively growing mycelia using the methods of the puncture, cut and unwound under the laboratory conditions and the natural conditions. Slight yellow spots were gradually formed after 2 d post-inoculation on the inoculated leaves, and the color of the center of the spot changed to be white. With the prolonging of inoculation time, the size of lesion represented to be slightly enlarged. PDA plugs without mycelia were used as a control, and the control group showed no symptoms. The same isolates were consistently reisolated from inoculated leaves. A. longipes can cause leaf blight of carrots in Israel (Vintal et al. 2002), leaf spot of potato in Pakistan (Shoaib et al. 2014) and leaf spot of Atractylodes macrocephala in China (Tan et al. 2012). To our knowledge, this is the first report of A. longipes causing leaf spot on tea in China and our findings will be useful for its management and for further research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call