Abstract

AbstractLevodopa (LD) determination was achieved for the first time by a cooper metal‐organic framework (MOF) based nanocomposite modified electrode. This research describes a simple, sensitive and cost‐effective electrochemical method for the detection of LD in real samples and the laboratory samples. This method is based on LD oxidation on glassy carbon electrode (GCE) surface modified with multi‐walled carbon nanotubes and copper terephthalic acid MOF (MWCNTs/Cu (TPA) MOF) nanocomposite. MOF was synthesized by the hydrothermal method. The synthesized MOF was characterized by Fourier‐transform infrared spectrophotometry (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM) and X‐ray diffraction (XRD). Electrochemical studies were accomplished by square wave voltammetry (SWV) and cyclic voltammetry (CV). The applied MOF, as a Cu‐containing synthetic peroxidase enzyme, can electrocatalyze oxidation of LD on the electrode surface and in incorporation with MWCNTs illustrated satisfactory synergic electrocatalytical properties which leads to sensitive detection of LD in the human serum sample. Limit of detection (LOD), sensitivity and linear range were 2 nmol L–1, 2.26 μA/μmol L–1 and 0.9‐35 μmol L–1 respectively, which in compared to other enzymatic or non‐enzymatic sensors were completely satisfying. Ultimately, stability, repeatability and reproducibility of as‐prepared sensor were investigated and the results were acceptable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.