Abstract

Parasites play a pivotal role in ecosystem health, influencing human and zoonotic diseases, as well as biodiversity preservation. The genus Trypanosoma comprises approximately 500 species mostly found in wildlife animals. This study focuses on identifying trypanosomes found in the white-necked thrush (Turdus albicollis) and the yellow-legged thrush (Turdus flavipes) in the Neotropics. First, we demonstrate the utility of an 18S rDNA sequence-structure phylogeny as an alternative method for trypanosome classification, especially when gGAPDH sequences are unavailable. Subsequently, the sequence-structure phylogeny is employed to classify new trypanosome sequences discovered in wild birds, placing them within the Ornithotrypanum subgenus. This marks the first identification of Ornithotrypanum in Neotropical birds, contributing to the understanding of the distribution and ecological adaptation of avian trypanosomes. Beyond taxonomy, this study broadens our comprehension of the ecological implications of avian trypanosomes in the Neotropics, emphasizing the need for continued research in this field. These findings underscore the importance of alternative classification methods, which are essential to unravel the complex interactions between parasites, wildlife hosts, and their ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call