Abstract

This study is the first report on atmospheric microplastics (MPs) observed in five outdoor environments, including an urban forest, a business center, commercial areas, and a public transportation hub in Seoul, South Korea. Air samples were collected using an active air pump sampler for 24 h in each area only on days without rainfall. All observed microplastics are secondary microplastics, in the form of irregularly-shaped fragments or fibers produced through various degradation processes, rather than being primarily produced like microbeads. The abundance of atmospheric MPs varied depending on the environment (i.e., region, height, and time) from 0.33 to 1.21 MP m-3, with the average number of MPs being 0.72 MP m-3 (standard deviation ± 0.39). MPs in the urban forest was observed to be 27% lower in abundance than that in the urban center which is ∼3 km away. The central business district was observed to have a 25% higher abundance during weekdays than on weekends. Our results show the ubiquity of MPs in various areas from high-rise buildings to forests tens of kilometers away from their direct sources, and a positive correlation between the abundance of MP and human activity. Morphologically, the fragment type (87.4%) predominated over the fiber type (12.6%), and chemically, polypropylene (PP) and polyethylene terephthalate (PET) components accounted for 65% of the total MP. PP polymers were found in all observation sites and contributed to 59% of the total MP fragments. The observed fibrous MPs were mainly composed of PET (72.7%) and PP (18.2%) polymers. Compared to other large cities (Shanghai, Beijing, Paris), Seoul is exposed to low levels of atmospheric MPs and high proportions of PP polymers. This study is limited to atmospheric MPs observed in summer and further investigation of MPs is needed to comprehensively understand the distribution and cycle of MPs based on long-term monitoring of atmospheric MPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.