Abstract

Self-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion in transport, storage, or process situations. For this reason, their thermal stability properties are required to assess possible process safety issues and for classification purpose. In this study, the first quantitative structure–property relationships (QSPR) dedicated to this class of compounds were developed to predict the heat of decomposition of possible self-reactive substances from their molecular structures. The database used to develop and validate the models was issued from a dedicated experimental campaign on 50 samples using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR methods (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on two types of inputs: 3D molecular structures determined using the density functional theory (DFT), allowing access to three-dimensional descriptors, and from SMILES codes, favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All models respected the OECD validation guidelines for regulatory acceptability of QSPR models. They were tested by internal and external validation tests and their applicability domains were defined and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.