Abstract

Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural strength and point-wise definable properties of 3D printed parts. These experiments, however, were mostly performed using fused deposition modeling (FDM), which is an inexpensive and broadly available technique, but which suffers from the high viscosity of the molten polymers, often impeding a form-locking connection between polymer and textile fibers. One study reported stereolithography (SLA) to be usable for direct printing on textile fabrics, but this technique suffers from the problem that the textile material is completely soaked in resin during 3D printing. Combining the advantages of FDM (material application only at defined positions) and SLA (low-viscous resin which can easily flow into a textile fabric) is possible with PolyJet modeling (PJM) printing. Here, we report the first proof-of-principle of PolyJet printing on textile fabrics. We show that PJM printing with a common resin on different textile fabrics leads to adhesion forces according to DIN 53530 in the range of 30-35 N, which is comparable with the best adhesion forces yet reported for fused deposition modeling (FDM) printing with rigid polymers on textile fabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.