Abstract

The propagation of electromagnetic waves in isotropic dielectric media with local dispersion is studied under the assumption of small but nonvanishing $\lambda/l$, where $\lambda$ is the wavelength, and $l$ is the characteristic inhomogeneity scale. It is commonly known that, due to nonzero $\lambda/l$, such waves can experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the wave "spin". The present work reports how Lagrangians describing these effects can be deduced, rather than guessed, within a strictly classical theory. In addition to the commonly known ray Lagrangian featuring the Berry connection, a simple alternative Lagrangian is proposed that naturally has a canonical form. The presented theory captures not only eigenray dynamics but also the dynamics of continuous wave fields and rays with mixed polarization, or "entangled" waves. The calculation assumes stationary lossless media with isotropic local dispersion, but generalizations to other media are straightforward to do.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.