Abstract

The structure, electronic and magnetic properties of the MgO bulk of (1x2x2) and (1x1x1) atoms for the B4 wurtzite phase, doped by Manganese Mn have been studied. Accordingly, the Mn atom location in the far and near spots was taken into account, as well as recognizing the magnetic interaction between both spots. Such initiative was provided thanks to the use of the density function theorem (DFT). As for the energy gap of the semiconductor MgO, it was calculated by the linearly increasing planar method, and by the local density approximation (LDA), not to mention the generalized gradient approximation (CGA).It is found that the calculated results agree well with other theoretical and experimental findings. Whereas, the energy gap and the total magnetic torque have been recorded for the Mn doped MgO in the (1x2x2) super Celle. Therefore, our given results have shown that the use of the classification-generalized approximation could enable us to provide more precise results of the d orbital composites, and they also added new properties to the new compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.