Abstract

Based on the density functional calculations with the GGA+U correction, we elucidate the origin of the experimentally reported ferromagnetism in n-type Cu-doped ZnO. Pure Cu-doped ZnO shows the unoccupied 3d states in the gap introduced by Cu, resulting in the insulating ground state and weak magnetic exchange interactions, in contrast to the half-metallic ground state and high ferromagnetic stability predicted by the calculations without U correction. However, the electron traps induced by Cu in n-type Cu-doped ZnO may lead to the partial occupancy of the Cu gap states, which stabilize the ferromagnetic ordering between two Cu atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.