Abstract

Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy (WtE) incineration processes. This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals (EPFRs) from phenolic compounds based on the first-principles calculations. Two oxygen-deficient conditions were considered: oxygen vacancies at the top surface and on the subsurface. Our simulations indicate that the adsorption strength of phenol on the α-Fe2O3(0001) surface is enhanced by the presence of oxygen vacancies. However, the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule, particularly for the surface with a defective point at the top layer. Thermo-kinetic parameters were established over a temperature range of 300–1000 K, and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface. The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeIII to FeII, which lower the oxidizing ability of surface reaction sites. The findings of this study provide us a promising approach to regulate the formation of EPFRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call