Abstract

Two-dimensional (2D) all-inorganic double perovskite materials have attracted great interest owing to their unique photoelectric characteristics, such as high quantum efficiency and relative stability. However, few studies have been conducted on the 2D all-inorganic double perovskite Cs3AgBiBr7, and its photoelectric properties are unclear. In this study, we present a detailed investigation of the band structure, optical absorption spectrum, carrier mobility and exciton binding energy of the double perovskite Cs3AgBiBr7 based on the first-principles. The results show that this system has an indirect band gap and low carrier mobility, high exciton binding energy (2041.38 meV) and significant light absorption in the UV region. We also find that the material may be a potential exciton insulation candidate owing to the exciton binding energy beyond the band gap. Our calculated results also show that low dimensional perovskite Cs3AgBiBr7 is more suitable for luminescence than a photovoltaic device. We hope our theoretical results will inspire and promote the experimental exploration of 2D all-inorganic double perovskite materials for photoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.