Abstract

Two-dimensional (2D) piezoelectric materials have attracted widespread attention due to their increasingly important niche applications in flexible nanoscale devices. The water-wetted graphene oxide papers exhibit scalable out-of-plane piezoelectricity induced by the hydrogen-bonded network within, and this system can be treated as a potential 2D piezoelectric candidate for future device applications. It triggered our interest to search for more 2D piezoelectric hydrogen-bonded networks. Ammonia (NH3) isoelectronic with water is introduced to generate NH3-wetted graphene oxide papers and realize their out-of-plane piezoelectricity. Their structures and piezoelectricity are investigated using first-principles calculations. They reveal ultrahigh piezoelectricity, compared to the best reported 2D materials. Their piezoelectricity is tuned by varying oxygen-containing functional groups in GO plates, confined NH3 layers, or orientations of NH3 molecules, and it could be applied to fabrication of ammonia sensors. Our study not only enriches the family of 2D piezoelectric nanosystems but also inspires their future experimental exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.