Abstract

With the further scaling down of device dimensions, charge trapping memory with high k materials HfO2 serving as capture layer shows good endurance and high storage capacity. Its relatively simple process and complete compatibility with the conventional semiconductor process furthermore make it widely studied. The oxygen vacancies in HfO2 are studied using the first-principles calculation in order to learn their influence on the storage properties of charge trapping memory. Write and erase operations of memory devices are simulated via changing the number of electrons in the super cell with defects. The results show that basically the distance between oxygen vacancies has no effect on charge trapping, but the number of oxygen vacancies does affect it. The more the number of oxygen vacancies, the stronger the electron capture ability is. Moreover, four-fold coordinated oxygen vacancy (Vo4) has lager capability for trapping charge than three-fold coordinated oxygen vacancy (Vo3). The analysis of density of states shows that Vo4 induces a large number of quantum states with deep energy levels which is little affected by distance and has large possibility of trapping charges. The results show that oxygen vacancy defects in HfO2 tetravalent coordination are conducive to improving the storage characteristics of charge trapping memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call