Abstract

Based on density-functional theory using the generalized gradient approximation plus Hubbard U scheme, we studied the structural, electronic, and magnetic properties of graphene doped with W atoms. Our results show that W introduces a spin polarized magnetic state with a local moment of 2.00 μB, which can be well understood using a hybridization model. When two W defects are introduced into graphene, the ferromagnetic (FM), antiferromagnetic, and paramagnetic states are obtained, depending on the crystal directions and relative positions between two W defects. Further analysis indicates that a Ruderman–Kittel–Kasuya–Yosida (RKKY) like behavior plays an important role in the magnetic order when the distance between W atoms is relatively large. However, when it is rather small (<3.0 A), the systems converge to paramagnetic states due to their direct interactions between W defects. These findings are helpful for better understanding the origin of FM order in 4d or 5d transitions metal doped graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.