Abstract
Direct methanol fuel cell (DMFC) is an efficient power source. However, the DMFC anodes are easily toxified by CO or other hydrocarbons, which terminates the methanol oxidation reaction (MOR). The most commonly used high performance catalyst on DMFC anodes is Pt or bimetallic PtRu. In this work, we apply density functional theory (DFT) to investigate the adsorption of CO and H2O on pristine Pt2/MO2(110) and the oxygen-rich Pt2/o-MO2(110) surfaces (M = Ru and Ir). We find that the application of the oxygen-rich surfaces significantly reduces the adsorption energies of CO and H2O molecules as well as the major reaction barrier (CO + OH → CO2) in the water–gas–shift-like (WGS-like) reactions forming CO2. Our detailed analyses on the electronic interaction between the catalysts and adsorbates indicate that Pt2/o-MO2(110) may be a promising DMFC anode material, which reduces the poison problem, and that it may be the actual experimental system that is responsible for the observed efficient CO removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.