Abstract

The electrochemical properties of VPO4O as a cathode for Mg batteries were studied by performing first principles calculations. Mg insertion features a plateau at about 2.8 V up to Mg0.5VPO4O and then another plateau at around 2.2 V up to MgVPO4O, with a theoretical capacity of about 154 mA h g-1 and 144 mA h g-1, respectively. MgVPO4O is found to be dynamically stable with the absence of negative frequencies in the phonon density of states. The insertion of one Mg reduced two VO6 units instead of reducing only one VO6 unit. In addition, MgVPO4O shows an energy barrier of about 0.58 eV for Mg-ion vacancy migration along the [111] direction, which is comparable to that of many other cathode materials. Our results indicated that MgVPO4O has the potential to be a promising candidate as a cathode material for Mg batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.