Abstract

Molybdenum sulfides nanomaterials, such as one-dimensional (1D) nanotubes, nanoribbons, and two-dimensional (2D) nanosheets, have attracted intensive research interests for their novel electronic, optical, and catalytic properties. On the basis of first-principles calculation, here, we report a new series of 1D ultrathin molybdenum sulfides nanowires, including Mo2S6, Mo3S6 and Mo6S10 nanowires. Our results demonstrate that these ultrathin nanowires are both thermal and lattices dynamically stable, confirmed with the calculated phonon spectrum and Born-Oppenheimer molecular dynamic simulation at the temperature up to 600 K. The calculated elastic constant is 21.33, 103.22, and 163.00 eV/Å for Mo2S6, Mo3S6, and Mo6S10 nanowires, respectively. Mo2S6 and Mo3S6 nanowires are semiconductors with band gap of 1.55 and 0.46 eV, while Mo6S10 nanowires is metal, implying their potential applications in electronics and optoelectronics. In particular, ultrathin molybdenum sulfides nanowires can be used as catalysts for hydrogen evolution reaction. The calculated Gibbs free energy change for hydrogen evolution is about −0.05 eV for Mo2S6 nanowire, comparable with those of Pt and H-MoS2. The prediction of these 1D molybdenum sulfides nanowires may enrich the 1D family molybdenum sulfides and make a supplement to understand the high performance of hydrogen evolution reaction in transition-metal dichalcogenides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.