Abstract
AbstractThis study uses density functional theory calculations to explore the energetics and electronic structures of planar defects in monoclinic β‐Ga2O3, including twin boundaries (TBs) and stacking faults (SFs). TBs on the (001)A, (001)B, (100)A, (100)B, and (−102) planes are examined; it is found that (100)A has a very low formation energy (0.01 Jm‐2), consistent with its observation in a number of experiments. For SFs, SFs on the (100) plane have much lower energy (0.03 Jm‐2) than SFs formed on the (010) and (001) planes. Growth on a (100) surface is thus expected to result in more planar‐defect formation, again consistent with experimental observations. In spite of their higher energies, TBs and SFs on planes other than (100) have been experimentally observed in epitaxial layers. Their origins are explained in terms of coalescence of different growth regions when the growth direction changes, or when low‐energy TBs on the growing surface lead to domains with different twinning orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.