Abstract

Thermophysical properties of interaction layer (IL) formed in U-Mo/Al dispersion fuel are important for the evaluation of its impact on the fuel performance. Binary and ternary phases observed in the IL, however, are not well studied yet. Recently we predicted the thermophysical properties of the binary U-Al compounds in U-Al system using density functional theory (DFT) calculations. In this paper, we investigated the structural, elastic, electronic, vibrational and thermodynamic properties of the ternary U-Mo-Al compounds formed in IL, including (U0.75,Mo0.25)Al3, U6Mo4Al43 and UMo2Al20, using DFT calculations. The polycrystalline aggregate properties of these compounds were obtained from the predicted single crystal elastic constants. The calculated electronic density of states confirm that all of the compounds exhibit typical metallic behavior with the majority states at the Fermi level dominated by U 5f electrons. Using quasi-harmonic approximation, we predicted the thermodynamic properties of these compounds by including both electronic and lattice contributions. We also investigated the effect of density on the thermodynamic properties of (U0.75,Mo0.25)Al3 phase. The current results are expected to be helpful to the modeling of the fuel performance of U-Mo/Al dispersion fuel and the thermodynamic modeling of the ternary U-Mo-Al system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.