Abstract
Through first-principles calculations, we study the thermoelectric transport properties of monolayer gallium chalcogenides GaX with X being S, Se or Te. We show that, the Mexican-hat-shaped dispersion near the valence band maximum, absent in the bulk, effectively enhances their thermoelectric performance. We analyze these results using a simple model Hamiltonian, and show that it can be understood as an effective one-dimensional band structure emerging from these two-dimensional materials. These results support recent proposals of using low-dimensional electronic band in high-dimensional materials in the search of new high-performance thermoelectric materials. Moreover, for n-doping, we find that strain engineering could be an efficient way of tuning the position of conduction band minimum and the corresponding thermoelectric performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.