Abstract

We compute the terahertz third-order nonlinear conductance of metallic armchair graphene nanoribbons using time-dependent perturbation theory. Significant enhancement of the intrinsic third-order conductance over the result for instrinsic 2D single-layer graphene is observed over a wide range of temperatures. We also investigate the nonlinear response of extrinsic metallic acGNR with |E_F|<<200 meV. We find that the third-order conductance exhibits a strong Fermi level dependence at low temperatures. A third-order critical field strength of between 1 and 5 kV/m is computed for the Kerr conductance as a function of temperature. For the third-harmonic conductance, the minimum critical field is computed to be about about 5 kV/m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.