Abstract

In this paper, we present a detailed study of the structure, defect formation energy, and electronic and magnetic properties of nonmetal-doped TiO2 by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). The formation energy reduces with increasing electronegativity of the dopant. After doping with nonmetal elements, some band gaps of the doped-TiO2 become narrow, and others become wide, in which impurity states appear in the band gap. The relative positions of the impurity states are much different, mainly caused by the different electronegativities of the nonmetal elements F, O, B, C and N. When H is added to achieve a charge balance, the impurity states approach the valence band maximum, because the electronegativity difference among the nonmetal elements is decreased. Therefore, nonmetal and H codoping is an effective way to improve the visible-light catalytic activity of anatase TiO2. In addition, N-doping and C-doping can cause spin polarization of the TiO2 electronic structure and form 1.0 μ B and 2.0 μ B magnetic moment, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.