Abstract

The electron transport properties of cis-polyacetylene and cis-polyacetylene based molecular wires (oligo(cyclopentadiene), oligo(pyrrole), and oligo(furan)) have been studied theoretically using a combination of density-functional theory and non-equilibrium Green′s functions method. The results demonstrate that the introduction of bridging group X (X=CH 2, NH, and O) in cis-polyacetylene has a profound effect on the electron transport behavior of the molecules. The conductance of the four molecular wires decreases in the order of polyacetylene>oligo(cyclopentadiene)>oligo(furan)>oligo(pyrrole). In particular, the conductances of oligo(furan) and oligo(pyrrole) are much lower than those of polyacetylene and oligo(cyclopentadiene). The mechanism of this difference of electron transport properties of these four molecular systems is analyzed in terms of their geometric structures, electronic structures, transmission spectra, and spatial distribution of frontier orbitals. It is found that the energy levels of frontier molecular orbitals and the evolution of spatial distribution of frontier molecular orbitals with the applied bias are the essential reason for generating this difference of electron transport behaviors of the four molecular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call