Abstract
Spinel-type manganese oxide is considered as a typical cobalt-free high-voltage cathode material for lithium-ion battery applications because of its low cost, non-toxicity, and easy preparation. Nevertheless, severe capacity fading during charge and discharge limits its commercialization. Therefore, understanding the electrochemical properties and its modification mechanism of spinel-type manganese oxide for a lithium-ion battery is of great research interest. Herein, we presented a theoretical study regarding the discharge process of LiMn2O4 and LiNi0.5Mn1.5O4 using first-principles calculations based on density functional theory. We found that the discharge process is accompanied by an increase in unit cell volume and lattice distortion. Moreover, 25% Ni-substitution increases the average calculated voltage of LiMn2O4 from 3.83 to 4.61 V, which is very close to the experimental value. The electronic structure is further discussed to understand the mechanism of voltage increase. In addition, the Ni element also reduces the Li-ion diffusion barrier by 0.06 eV, which helps to improve the intrinsic rate performance of LiMn2O4. Our research can provide insight into how Ni-substitution influences the voltage and diffusion barrier of LiMn2O4 and pave the way for other spinel-type manganese oxide electrode applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.