Abstract

The high interfacial defect density at SiC/SiO2 interfaces formed by thermal oxidation is a crucial problem. Although post-oxidation annealing with H2 can reduce the defect density, some defects still remain at the interface. We investigate the termination of vacancy defects by H atoms at the 4H-SiC(0001)/SiO2 interface and discuss the stability of these H termination structures. Si vacancy defects can be terminated with H atoms to reduce the defect density, and the termination structure is stable even at high temperatures. On the other hand, it is difficult to terminate C vacancy defects with H atoms because the H atoms desorb from the dangling bonds and form H2 molecules below room temperature. However, we confirm that N atoms are effective for reducing the C vacancy defect states. Therefore, a defect-less interface can be achieved by post-oxidation annealing with H2 and N2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.