Abstract

A first — principles method of density functional theory with a gradient approximation of the exchange-correlation potential in the form of PBE implemented in the PWscf program of the Quantum ESPRESSO software using the Grimme’06 scheme is used to calculate the crystal structure of naphthaline and anthracene at a hydrostatic pressure ranging from 0 GPa to 2 GPa and from 0 GPa to 20 GPa respectively; their equations of states are analyzed. It is shown that under pressure the volume decreases due to voids, and the molecules themselves are practically not deformed. The Gruneisen parameter is calculated in the Slater-Dugdale-MacDonald-Zubarev-Vashchenko model. This parameter decreases from the equilibrium values of 2.356 (anthracene) and 3.226 (naphthaline) with an increase in the pressure. With the use of the Mie-Gruneisen equation under the additional Hugoniot-Renkin condition the impact pressure is calculated, which increases compared to the cold one at a relative compression V/V0, below 0.7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.