Abstract
We study the strength of the binding of 4d and 5d transition metals on a graphene sheet in the limit of high-coverage using first principles density functional theory. A database of the binding energies is presented. Our results show that the elements with low or near-half occupation of the d shell bind strongest to the graphene sheet. We find a transfer of electrons from the transition metal to the graphene sheet; the charge transfer decreases with increasing d shell occupation. Motivated by the strong binding to Hf we also study the binding of graphene to the Hf rich surface of HfO2. The predicted binding energy of −0.18 eV per C atom when coupled with the existing integration of HfO2 into Si-based CMOS devices suggests a new route to integrating graphene with silicon, allowing for an integration of graphene-based nanoelectronic components into existing silicon-based technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.