Abstract

High pressure induced phase transition of YSb and ScSb compounds have been studied using Density Functional Theory method within Generalized Gradient Approximation. It was found that the phase transition from the NaCl-type (B1) to a CsCl-type structure (B2) began to occur at around 29 GPa for YSb compound, agreeing well with available experiments and theoretical calculations. For ScSb compound it was suggested that structural phase transition from B1 to B2 will occur at about 40 GPa, differing greatly with experimental and theoretical results. The finding that the transition pressures increase with decreasing lattice constant in the NaCl-type structure for YSb and ScSb compounds was found to be similar to the phenomena observed for LnSb (Ln: lanthanide) compounds. Mulliken charge and overlap population analysis revealed that YSb and ScSb compounds in B1 structure show similar interaction between anion and cation, while in B2 structure a higher degree of covalency was found for ScSb than that in YSb. Also, DOS and band structure of these two compounds in B1 and B2 structures were presented and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call