Abstract

Silicon–germanium (SiGe) alloys have sparked a great deal of attention due to their exceptional high-temperature thermoelectric properties. Significant effort has been expended in the quest for high-temperature thermoelectric materials. Combining density functional theory and electron–phonon coupling theory, it was discovered that silicon–tin (SiSn) alloys have remarkable high-temperature thermoelectric performance. SiSn alloys have a figure of merit above 2.0 at 800 K, resulting from their high conduction band convergence and low lattice thermal conductivity. Further evaluations reveal that Si0.75Sn0.25 is the best choice for developing the optimum ratio as a thermoelectric material. These findings will provide a basis for further studies on SiSn alloys as a potential new class of high-performance thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call