Abstract
The adsorption of antimony atom on the Ag(1 1 0) surface has been studied within the density functional theory framework. It was turned out that Sb–Ag surface alloy was formed in which Sb atoms substitute Ag atom in the outermost layer and subsurface site absorption was not preferred, suggesting that Sb is well segregated to the surface. Geometric analysis showed that rumpling between substitutional Sb and Ag in the alloy surface is negligible. These results are found to agree well with the experimental finding of Nascimento et al. [Surf. Sci. 572 (2004) 337]. In addition, investigation of the diffusion of Ag atom on bare and Sb-covered Ag(1 1 0) surface showed that Ag adatoms will jump along the so call in-channel direction and Sb substitution has little effect on the diffusion of Ag adatoms on Ag(1 1 0) surface. Such diffusion behavior was found to be different from that of Ag adatoms on Ag(1 1 1) surface, where the diffusion energy barrier was reported to be significantly increased upon Sb substitution [Phys. Rev. Lett. 73 (1993) 2437].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.