Abstract
The distribution of solutes and their interactions play a crucial role in determining the mechanical properties of the γ/γ′ interface in Ni-based single-crystal alloys. In this study, atomic interactions between Re and W and their alloying effects on the inter-phase cohesion of the γ/γ′ interface are investigated by first-principles calculations. Our results show that W atom exhibits a preference for partitioning into the γ phase, while the stability of the γ/γ′ interface can be enhanced due to the partitioning of W to the γ′ phase. Moreover, our results reveal that partitioned W atoms in the γ′ phase contribute to the strengthening of the γ/γ′ interface. Conversely, the dissolution of W atoms in the γ phase weakens the inter-phase cohesion. However, this detrimental effect can be mitigated by introducing of Re into the γ/γ′ interface. Partitioning of Re and W into separate phases yields minimal alterations in interaction energies, resulting in a notable enhancement of inter-phase cohesion when compared to the partitioning of Re and W within γ phase of the γ/γ′ interface. Additionally, the partitioning of solute atoms at the γ/γ′ interface leads to local lattice distortion and interfacial energy reduction, which contribute to the enhancement of inter-phase cohesion of the γ/γ′ interface. As a result, a model is proposed for interpretation of crack propagation at the γ/γ′ interface at the threshold region with the presence of tensile stress in Ni-based single-crystal alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.