Abstract

First principles calculation was performed using tight-binding LMTO method with local density approximation (LDA) and atomic sphere approximation (ASA) to understand the electronic properties of chromium nitride. The equilibrium geometries, the magnetic moment, the electronic band structure, the total and partial DOS are obtained under various pressures and are analyzed in comparison with the available experimental data. The most stable structure of CrN is NaCl structure in the FM state. A pressure-induced second order magnetic phase transition from ferromagnetic (FM) to non-magnetic (NM) at very high pressure of 0.5549Mbar is predicted. Our results indicate that CrN can be used as a hydrogen storage material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.