Abstract
We present detailed electronic band-structure calculations for antiferromagnetic chromium compounds, CuCrX2 (X = S, Se or Te), carried out using spin-polarized density functional theory within the generalized-gradient approximation (GGA). A narrow-band semiconductor-to-metal transition is observed upon replacement of S or Se by Te. The indirect bandgap is found at 0.58 eV and 0.157 eV for CuCrS2 and CuCrSe2, respectively. The results for our theoretical calculations are well in line with the electronic transport properties experimentally observed for CuCrS2 and CuCrSe2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.