Abstract

Abstract It is known that the interlayer van der Waals (vdW) interactions will decrease the thermal conductivity of graphene. Single layer graphene (SLG) has the highest thermal conductivities, double layer graphene (DLG) would decrease to about half of the thermal conductivity of SLG. The graphite was measured to have a thermal conductivity of about 2000 W/m-K. Some research shows that graphite differs from SLG within a factor of 2, and DLG has almost the same thermal conductivity with graphite. In theoretical aspect, how to simulate the vdW interaction between graphene layers is a long existing problem. It is only until recently that the vdW interaction is still an active topic in first principle calculations. The popular methods include the Grimme’s DFT-D, vdW-DF and vdW-DFT-R methods. The vdW-DFT-R method was further optimized to increase accuracy by Hamada and was found to predict the most accurate interlayer distance between AB-stacked graphene in our recent study. The motivation of this work is to investigate the effect of vdW interaction on the thermal conductivity of multiple layer graphene from principles. We will calculate firstly the phonon dispersion relations of multiple layer graphene with the vdW interaction included. The obtained phonon properties and force constants will be combined with the ShengBTE method to calculate the thermal conductivity. The results show how vdW interaction causes the dimensional crossover of graphene thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.