Abstract

ABSTRACTA theoretical atomic process model of the interfacial oxidation reaction on a silicon substrate is proposed based on first-principles calculation. In the calculation, H-terminated Si(100) surfaces are used for the first approximation of the silicon-oxide/silicon interfaces. The proposed atomic process model is based on the plausible assumption that the remaining stress in the oxidized region is kept at a minimum and does not break the grown Si-O-Si network when the oxidation proceeds. As a natural consequence, Si atoms are emitted from the interface as the oxidation proceeds to release the stress due to substitution of Si-Si bonds by Si-O-Si bonds. This emission is consistent with well-known experiments of oxidation-induced stacking faults and oxidation-enhanced diffusion. Our model presents a microscopic approach for understanding the silicon oxidation process, whereas the widely accepted Deal-Grove model presents a macroscopic one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.