Abstract

The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials. Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures, showing potential applications in electronic devices. Here we theoretically investigate the hafnium intercalation between graphene and Ir(111). It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius, which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures. Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call