Abstract

We applied ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. The calculations were carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. Our study showed that the reaction of cycloaddition of benzyne to pristine graphene was exothermic with the possibility of formation of both [2 + 2] and [4 + 2] reaction products. The binding energies of benzyne molecules attached to semiconducting zigzag and metallic armchair nanotubes were found to be inversely proportional to the nanotube diameter. The linear fits of the binding energies between benzyne and carbon nanotubes extrapolated to the zero curvature limit were in good agreement with the binding energies of benzyne attached to graphene. Our calculations demonstrated that the cycloaddition of benzyne could open up a nonzero gap between the valence and c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.