Abstract

The field emission from pure boron-nitride nanotube and boron-nitride nanotube encapsulated with natrium atoms with the electric field perpendicular to the axis of nanotubes is simulated based on a self-consistent method using the density-functional formalism. It has been found that the nearly-free-electron states in boron-nitride nanotube would perform very well in field emissions after natrium atom encapsulation. The characters of total energy distribution curves are analyzed to seek the function of nearly-free-electron states in the field emission, with special attention to response of the emission current to the external electric field. At last, the perpendicular emission geometry is found to possess a very sensitive response degree which is supposed to be related to specific expansion orientation of the nearly-free-electron states in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.