Abstract

Using first-principles density functional calculations, we have investigated the electronic structures of Ti-doped ZnO (Ti is in 4+ oxidation state) with and without oxygen vacancy. The ferromagnetic property is identified in the presence of oxygen vacancy despite Ti being nonmagnetic in its natural phase. The ferromagnetism originates from the charge transferring from donor derived-defect band to unoccupied Ti-3d states and the hybridization between Ti-3d and O-2p band near the Fermi level. On increasing the oxygen vacancy concentration, a transition from a long-ranged magnetic order to a short-ranged interaction is found and the oxygen vacancies prefer to distribute non-uniformly in Ti-doped ZnO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.