Abstract

In recent work, we have investigated the structure and stability of β-armchair antimony nanotubes (SbNT) using density functional theory (DFT). We studied electronic properties like electronic band structure, density of states (DOS) and mechanical properties such as stiffness constant, Poisson's ratio, and mechanical strength for these nanotubes. We found that these nanotubes are energetically stable and semiconducting in nature with band-gap varying between 1.32 eV to 1.47 eV. We have also calculated effective mass and carrier mobility for these nanotubes. Furthermore, stiffness constant and mechanical strength of these nanotubes increases with increase in diameter. While, (4,4) nanotube shows anomalously higher strength than other nanotubes. The results of effective mass and carrier mobility for these nanotubes shows that electrons have higher effective mass and therefore lesser mobility than holes for most of the nanotubes. Our calculations show that β-armchair antimony nanotubes (SbNT) could be use in nano-electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.