Abstract

We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective in clarifying the details of transport through atomic wires. We show channel transmissions, channel resolved LDOS, and channel resolved current density, and elucidate the number of conduction channels, the relation between atomic orbitals and the channels, and their dependency on the geometry of the atomic wire. We demonstrate that stretching of the bent wire can explain the mechanism of the increase of conductance of Al during the elongation of the contacts. The behavior of our calculated conductance and channel transmissions during the stretching process is in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.