Abstract

AbstractWe discuss defect engineering strategies in radiation detector materials. The goal is to increase resistivity by defect-induced Fermi level pinning without causing defect-induced reductions in the carrier drifting length. We show calculated properties of various intrinsic defects and impurities in CdTe. We suggest that the defect complex of a hydrogen atom and an isovalent impurity on an anion site may be an excellent candidate in many semiconductors for Fermi level pinning without carrier trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.