Abstract

Direct calculations are reported of the one-electron d(xy)→d(x 2 − y 2) and d(xy)→d(z 2) and two-electron d(xz, yz)→d(z 2, x 2 − y 2) crystal-field excitations in NiO based on first principles calculations within the B3LYP hybrid scheme. It is shown that within this scheme, calculations at the limit of exact exchange lead to the most satisfactory overall agreement with the experimental spectra, and that for the localized basis set used in this study the stability limit of the excited states is between 30% and 40% exact exchange for the AF2 and ∼20% for the FM spin alignments. A mapping of the crystal-field Hamiltonian suggested by Kanamori onto the directly calculated ground and excited state total energies leads to values of the crystal-field, ΔCF, and the Racah B parameters which are close to those obtained previously from spectroscopic and theoretical studies. There is also close agreement between the two-electron excitation energy obtained from the Kanamori Hamiltonian and that calculated directly. It is shown that magnetic coupling constants obtained from a mapping of an Ising spin Hamiltonian onto ground state energies do not provide a quantitative guide to differences in the energies of the AF2 and FM spin alignments of excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.