Abstract
The atomic geometries and electronic band structures of Cu-embedded Ni(110) surfaces were studied theoretically. First principles calculation with spin-resolved local density functional theory was applied to the Ni(110) surface, and one to four Cu-embedded Ni(110) surfaces in the 2×2 surface unit cell. The optimized structures for the Ni(110) surface showed that interlayer spacing between the first and the second layer shrunk 11.1% of the bulk distance, but the second and third layer spacing expanded by 2.9% in agreement with previous studies. For the Cu-embedded surfaces, embedded Cu atoms are 11-14 pm higher than the top Ni atoms, which is about four times larger than the difference of the atomic radii. The detailed band structures and corresponding local density of states (LDOS) were calculated. At the embedded Cu atom sites, the surface LDOS near the Fermi level was reduced in agreement with previous scanning tunneling microscopy observation. In addition, by increasing the number of Cu atoms in the top layer, magnetic moments were decreased near the surface regions. [DOI: 10.1380/ejssnt.2009.681]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.